Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli.

نویسندگان

  • Boram Lim
  • Kangseok Lee
چکیده

UNLABELLED The enzymatic activity of Escherichia coli endo-RNase III determines the stability of a subgroup of mRNA species, including bdm, betT, and proU, whose protein products are associated with the cellular response to osmotic stress. Here, we report that the stability of proP mRNA, which encodes a transporter of osmoprotectants, is controlled by RNase III in response to osmotic stress. We observed that steady-state levels of proP mRNA and ProP protein are inversely correlated with cellular RNase III activity and, in turn, affect the proline uptake capacity of the cell. In vitro and in vivo analyses of proP mRNA revealed RNase III cleavage sites in a stem-loop within the 5' untranslated region present only in proP mRNA species synthesized from the osmoregulated P1 promoter. Introduction of nucleotide substitutions in the cleavage site identified inhibited the ribonucleolytic activity of RNase III on proP mRNA, increasing the steady-state levels and half-life of the mRNA. In addition, decreased RNase III activity coincided with a significant increase in both the half-life and abundance of proP mRNA under hyperosmotic stress conditions. Analysis of the RNA bound to RNase III via in vivo cross-linking and immunoprecipitation indicated that this phenomenon is related to the decreased RNA binding capacity of RNase III. Our findings suggest the existence of an RNase III-mediated osmoregulatory network that rapidly balances the expression levels of factors associated with the cellular response to osmotic stress in E. coli. IMPORTANCE Our results demonstrate that RNase III activity on proP mRNA degradation is downregulated in Escherichia coli cells under osmotic stress. In addition, we show that the downregulation of RNase III activity is associated with decreased RNA binding capacity of RNase III under hyperosmotic conditions. In particular, our findings demonstrate a link between osmotic stress and RNase III activity, underscoring the growing importance of posttranscriptional regulation in modulating rapid physiological adjustment to environmental changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression.

UNLABELLED The complex posttranscriptional regulation mechanism of the Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely, RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a matu...

متن کامل

Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited.

The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untransla...

متن کامل

Two Tandem RNase III Cleavage Sites Determine betT mRNA Stability in Response to Osmotic Stress in Escherichia coli

While identifying genes regulated by ribonuclease III (RNase III) in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stres...

متن کامل

Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP.

Gram-positive soil bacterium Corynebacterium glutamicum uses the compatible solutes glycine betaine, proline, and ectoine for protection against hyperosmotic shock. Osmoregulated glycine betaine carrier BetP and proline permease PutP have been previously characterized; we have identified and characterized two additional osmoregulated secondary transporters for compatible solutes in C. glutamicu...

متن کامل

RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli.

Hyper-osmotic stress strongly induces expression of the Escherichia coli proU operon encoding a high affinity uptake system for the osmoprotectants glycine betaine and proline betaine. Osmoregulation of proU takes place at the transcriptional level by upregulation of the promoter at high osmolarity and repression of transcription by the nucleoid-associated protein H-NS at low osmolarity. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 197 7  شماره 

صفحات  -

تاریخ انتشار 2015